DE · Topics · Resources · Sponsored Content

Creating Physiologically Realistic Models for Medical Education and Ballistics Testing

Using novel materials and software strategies to develop realistic medical models from radiographic data.

PROBLEM

Mainstream 3D printing products offer physicians a tool for producing models that look like specific human parts; however, available 3D printing materials do not necessarily feel human-like, nor react to suture or surgical tools in the same way as organic tissue.

Similarly, experts in ballistic testing are currently dependent on unrealistic models or expensive and difficult to source animal tissues. 3D printing of holistic anatomical structures from physiological relevant materials promises to yield the next generation of medical modeling.

OBJECTIVE

The objective of the project was to establish a workflow for advanced medical modeling using newly developed segmentation software, prototype biomimetic polymer blends, and enhanced application of porous geometries for multijet printing (MJP) delivered as a technical data package.

Goals of the project were to prototype material and material blends, create isolated and regional anatomical models from medical imaging data, and discover best practices for post processing complex models. A further objective was to train and educate potential users of the technology on standardized feedstock materials, benchmark property data, microstructure control, process window definition, and processing specifications.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

 America Makes’ Spring 2024 TRX Explores AM Advancements
The event was a knowledge hub for industry leaders to network and share innovative approaches across design, material, process and...

ELEMENTS Version 4.2.0 Now Released
ELEMENTS 4.2.0 is an open-source computational fluid dynamics (CFD) software suite.

AMEXCI and Nikon SLM Solutions Collaborate in the Nordics
This collaboration is intended to enhance large-scale serial production through additive manufacturing machines, the companies report.

BMF Gets FDA OK for Ultra Thin Dental Veneer Material
Zirconia materials now qualified for use in the production of thin cosmetic veneers, company reports.

Nexa3D and KVG Scale Defense Manufacturing Capabilities
The government contractor adds 15 high-speed extrusion printers from Nexa3D to meet demand for deployable 3D printing, organizations report.

KonnectAi Launches AI Quality Inspection Tool for Manufacturers
KonnectAi collaborates with Google Cloud to deliver AI-powered inspection to help manufacturers ensure quality, company says.

All posts