DE · Topics · Resources · Rapid Ready Tech · Sponsored Content

Predict 3D Printed Cellular Material Stiffness and Failure Response

Shape Independent Models Predict Behavior of 3D Printed Cellular Materials with 90% Accuracy.

PROBLEM

Despite the ability to design and manufacture cellular materials and structures with additive manufacturing, companies are reluctant to implement these in criticalto- function applications due to the large uncertainties in performance.

The challenge in predicting cellular material behavior stems partly from the uncertainty attributable to the process itself, and partly due to the difficulties fundamentally intrinsic to cellular materials, such as shape and size dependence, junction effects, and nonuniform stress and damage states.

The use of bulk material properties disregards behavior that includes these effects, and the use of homogenization techniques is limited due to their inherent, empirical dependence on shape.

OBJECTIVE

While previous work homogenized behavior on the cellular level, this project sought to go a level deeper and extract data at a material level. The objective of this project was to develop analytical equations that could be used not merely to study the effective performance of cellular structures, as is commonly done in literature, but also to extract a point-wise material property that is cell-shape independent.

The primary workforce and education goal of this project was to develop a pilot online, living textbook in additive manufacturing, for and by the members of America Makes.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

Digitally Designing the Factory of the Future
Artificial intelligence also plays a role in building an efficient, economic plant layout for optimal operations.

Vectary API Brings Product Digital Twins to Life
The new offering enables companies to integrate digital twins for immersive 3D experiences, enhanced decision making, and real-time product control.

3D Printing at the Crossroads
Additive manufacturing events revealed a state of the industry that is facing economic obstacles.

Altair Acquires Cambridge Semantics
Cambridge Semantics is a modern data fabric provider and creator of one of the industry’s analytical graph databases

ENGYS Now Offers HELYX v4.2.0
HELYX v4.2.0 is built to help engineers tackle complex computational fluid dynamics (CFD) challenges

Rackable Systems Display Power and Performance
Scalability and space efficiency are just a few benefits of this special breed of workstations.

All posts