DE · Topics · Resources · Digital Thread · Sponsored Content

Improve Powder Utilization by Investigating the Property Effects of Reusing AM Powders

Reduced powder costs up to 80% by reusing powder in the SLS process.

PROBLEM

High material costs are a major economic reason for continued limited application of additive manufacturing (AM) for batch production. Powders are expensive; nylon 12 powders, for example, cost between $75 and $100 per kilogram, while titanium is roughly twice that amount.

In a typical build, only 5-20% of the powder volume is fused into useful parts. The economic models must take into account the powder that is discarded, making the material in AM parts up to five times more expensive than the raw powder.

OBJECTIVE

The objective of this program was to provide a substantial reduction in material costs for orthopedic applications involved in AM part production by decreasing the amount of discarded powder.

The materials considered were titanium (Ti-6Al-4V), two types of stainless steel (316L and 17-4 PH), and nylon 12. To quantify the changes resulting from the number of reuses in selective laser sintering (SLS), a powder bed fusion process, a total of eight reuse cycles was completed for each powder. Tensile testing, printed part densities, chemical analysis, and powder characterization were performed and analyzed.

Fill out the information below to download the resource.

By downloading this content, I agree to receive the DE 24/7 Newswire, a twice weekly free email newsletter (you may choose to opt-out in the newsletter).

Latest News

Mercedes-Benz Funds Educational Initiatives in AI, Automated Driving at Universities
UC San Diego’s 3D imaging research allows Mercedes-Benz R&D North America (MBRDNA) to tap into the institutional research...

ESI Group Collaborates with Aberdeen Strategy on Virtual Prototyping
The collaborative effort, "Shift Left: The Value of Virtual Prototyping for Digital Transformation of the Product Development Lifecycle," is an...

Hewlett Packard Enterprise Launches Speed-Driven Supercomputer in Poland
Academic Computer Centre Cyfronet AGH's new Helios supercomputer will advance AI-driven scientific research in astronomy, medicine, and climate protection, HPE...

Energica Renews Collaboration With Siemens
Siemens will keep supporting Energica via 3D systems simulation and computational fluid dynamics methodologies from Siemens’ Xcelerator portfolio.

Maximize Workforce Efficiency: Using KnowledgeSmart to Identify Skill Gaps
Robust, integrated skill assessments connect your employees with the training that will have the greatest impact.

IronCAD 2024 Product Update 1 Released
IronCAD 2024 Product Update 1 (PU1) brings enhancements and product quality improvements across general modeling, sheet metal design, and collaboration capabilities, company...

All posts